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We generalize the class of models of the wall layer of Aubry et al. (1988), based on 
the proper orthogonal decomposition, to permit uncoupled evolution of streamwise 
and cross-stream disturbances. Since the Reynolds stress is no longer constrained, in 
the absence of streamwise spatial variations all perturbation velocity components 
eventually decay to zero. However, their transient behaviour is dominated by 
‘ghosts’ of the non-trivial fixed points and attracting heteroclinic cycles which are 
characteristic features of those models based on empirical eigenfunctions whose 
individual velocity components are fixed. This suggests that the intermittent events 
observed in Aubry et al. do not arise solely because of the effective closure assumption 
incorporated in those models, but arc rooted deeper in the dynamical phenomenon 
of the wall region. 

1. Introduction 
In the recent paper of Aubry et al. (1988) a low-dimensional model for the 

dynamical interaction of streamwise vortices in the wall region of a turbulent 
boundary layer was derived. The model made use of the proper orthogonal, or 
Karhunen-LoBve, decomposition theorem (Lumley 1967, 1970), which provides a 
basis of divergence free empirical eigenfunctions for the space of velocity fields. The 
Navier-Stokes equations were then projected, via the Galerkin method (cf. 
Ladyzhenskaya 1969; TBman 1988) into a sequence of subspaces spanned by finite 
(and small) sets of these eigenfunctions. The resulting sets of ordinary differential 
equations in the modal amplitude coefficients, obtained by truncating at  various 
orders, were then studied by the methods of dynamical systems theory. 

The basis functions derived from experimental autocorrelation measurements via 
proper orthogonal decomposition (cf. Herzog 1986) are optimal in the sense that, 
among all possible reconstructions of velocity fields by any basis set truncated at 
some fixed order, they yield the greatest kinetic energy in a time-averaged sense for 
‘ typical ’ flows under the same conditions as those for which the eigenfunctions were 
derived. There is increasing evidence, based primarily upon direct numerical 
simulations of the NavierStokes equations, that these empirical eigenfunctions offer 
significant advantages over a priori choices of bases such as Fourier or Chebyshev 
modes or eigenfunctions of the Stokes operator itself. See Moin & Moser (1989), 
Sirovich (1989), Kirby, Boris & Sirovich (1990) and references therein. We therefore 
expect the finite dimensional dynamical systems thus obtained to capture important 
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aspects of the turbulent energy production mechanism, even at  relatively low 
truncation orders, provided that suitable account is taken of energy loss to neglected 
modes in the inertial and dissipative ranges. For more details of and comments on the 
procedure, see the references cited above or Holmes (1990). 

The particular truncation which was studied in detail by Aubry et al. (1988) 
includes no streamwise variations. (Since the typical lengthscales of cross-stream and 
streamwise disturbances differ by an order of magnitude in the wall region, it was felt 
that this was a reasonable first approximation.) However, streamwise variations 
enter the model indirectly in that the empirical eigenfunctions, which are vector 
valued, are derived from time-averaged autocorrelation measurements made in a 
turbulent boundary layer in which (long wavelength) streamwise disturbances play 
a prominent role. This results in eigenfunction components whose magnitudes at  
streamwise wavenumber zero reflect the average Reynolds stress (u, u2) in the wall 
region. While in principle the empirical eigenfunctions yield a complete basis, when 
low-order truncations are employed the effect is to constrain admissible velocity 
fields by coupling cross-stream and streamwise components. This is equivalent to a 
closure assumption, as shown below. 

Specifically, the representation of the velocity field employed by Aubry et al. 
(1988), restricted to zero streamwise wavenumber (k, = 0) and a single family of 
eigenfunctions, was 

K 

u ( x ,  t )  = C ak( t )  exp (2xikz,/L3) #k(x2). (1.1) 
k--K 

Here zl(ul) is the streamwise direction, z3(u3) the spanwise and xz(uz)  the direction 
normal to  the wall and k / L ,  is the spanwise wavcnumber. Each basis element 
#k = (#,,, #2k, #,,) is a divergence-free, timc-independent vector field. Typical forms 
of the components #,,(x2) are shown in Aubry el al. (1988, figure 4) :  note that (for 
k,  = 0) they are purely real or purely imaginary. The complex modal coefficients 
a,(t) are determined via solution of the projected ordinary differential equations and 
thc sum in ( 1 . 1 )  is taken over a discrete set of spanwise Fourier modes. 

Since the velocity field u is real, i t  is only necessary to consider coefficients ak with 
k 2 0. Moreover, as described in Aubry et al. (1988), the coefficient a,, which 
represents a modification to the (constant) mean velocity profile, evolves auton- 
omously and decays to zero as t increases and i t  can therefore be dropped in studies 
of long-term behaviour. One therefore studies the behaviour of the K ‘active’ modes 
a,, ..., a,. The general form of the projected differential equations determining the 
modal amplitude vector a = (a l ,  . . . , is 

(1.2) u = A, a + B,(a, a) + C(a, a, a). 

Here A, is a diagonal matrix with entries involving negative (stabilizing) 
contributions from viscous dissipation in the modes included in ( 1 . 1 )  and losses, 
parameterized by a, to neglected modes as well as positive contributions from energy 
production terms, to be discussed below. 8, is a quadratic interaction term derived 
from the nonlinear term of thc Navier-Stokes equation and C is a cubic term which 
results from expressing the mean velocity profile as a function of the amplitude of the 
perturbation velocity field. Specifically, we take 

V 

This is the solution of the exact equation for the mean velocity profile (using spatial 



Intermittent dynamics in simple models of the turbulent wall layer 77 

averages in planes parallel to the wall), making only the assumption that the changes 
in the mean velocity are slow in some sense. The first term in (1.3) represents the 
driving pressure gradient. The second term describes the erosion of the mean velocity 
gradient by the momentum transport due to the perturbation velocity field. This has 
a globally stabilizing effect ; as the eddies grow more energetic, they reduce the mean 
velocity gradient, cutting off their source of energy. 

For (unrealistically) large loss a, the trivial solution a = O(u = 0 )  of (1.2) is globally 
asymptotically stable. As a decreases, the entries of A, (which are of the form 
ukk - a(& +a&) ; akk, aik,  a& > 0) successively become positive and non-trivial 
branches of equilibria bifurcate from 0.  (The dependence of B, on a is relatively 
weak.) These branches subsequently undergo secondary bifurcations and become 
unstable. The full picture is rather complicated and depends delicately on the precise 
coefficients of A,, B,, C, which themselves depend on the wavenumbers of modes 
selected via the cross-stream period L, (cf. (1 .1 ) ) :  see Aubry & Sanghi (1989), Aubry, 
Holmes & Lumley (1990), and Stone (1989). However, a robust feature of all the 
models studied so far is the existence of open ranges of loss parameter a in which the 
systems possess attracting heteroclinic cycles. 

A heteroclinic orbit is a solution connecting two equilibrium points of an ordinary 
or partial differential equation. A heteroclinic cycle is a set of two or more such 
connections which closes up, so that nearby solutions circulate and continually 
return to neighbourhoods of the equilibria. These latter are necessary unstable saddle 
points. It is easy to show that such cycles cannot generally exist in ‘typical ’ (generic) 
differential equations, since they are unstable to  small perturbations such as 
parameter variation (cf. Guckenheimer & Holmes 1983). However, as Guckenheimer 
& Holmes (1988) realized, symmetries in the equations can ‘ stabilize ’ heteroclinic 
cycles and subsequently the existence of structurally stable cycles, occurring for open 
sets of parameter values, was proved for systems with both discrete and continuous 
symmetry groups (see also Armbruster, Guckenheimer & Holmes 1988, 1989). 

When a heteroclinic cycle is attractive, solutions in its neighbourhood spend long 
quiescent periods near the equilibria, punctuated by rapid heteroclinic transits. This 
phase space behaviour corresponds in physical space to periods of (pseudo-) steady 
flow involving fewer modes interspersed with relatively violent ‘events ’ in which 
(many) more modes become active. Numerical solutions of the one-space dimension 
KuramotoSivashinsky equation due to Hyman & Nicolaenko (1985) and Hyman, 
Nicolaenko & Zaleski (1986) (cf. Nicolaenko, Scheurer & TBman 1985, 1986) had 
already been observed to exhibit such behaviour, which has more recently been 
seen in simulation of the two-space dimension Kolmogorov flow (Nicolaenko & She 
1990a, b ) .  At about the same time that Armbruster et al. (1988) did their work, 
Proctor & Jones (1988 ; cf. Jones & Proctor 1987) found symmetric heteroclinic cycles 
in a two-mode reduction of a BBnard convection problem. In fact Busse & Heikes 
(1980) and Busse (1981) had even earlier seen cycles due to the discrete group of 
cyclic permutations in a model for three interacting modes. 

In  the present case the continuous symmetry group O(2)  in phase space - the 
group of reflections and rotations in a plane - arises naturally from the invariance 
under spanwise translations and reflections of the original boundary-layer flow. 
Similar symmetries arise in weakly nonlinear evolution equations, such as those of 
Ginzburg, Landau, Newell, Segal and Whitehead, which describe modal interactions 
in transition flows. See Holmes (1991) for a partial review. 

As described in Aubry et al. (1988) and Holmes (1990), the velocity fields u(x,t) 
reconstructed in (1.1) with coefficients uk(t) undergoing such cycles have much in 
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common with the bursting phenomenon observed in turbulent boundary layers (cf. 
Kline et al. 1967; Corino & Brodkey 1969). I n  particular, the roll spacing is that 
observed by Kline et al., and it is possible to adjust the loss to unresolved 
disturbances so that the bursting period is also that observed by Kline et al. When 
this is done, the duration of the burst also agrees with Kline’s observations. An event 
consists of a sudden intensification and sharpening of the updraft between eddies, 
followed by a drawing apart of the eddies, and the establishment of a gentle 
downdraft between them. These are similar respectively to the ejection and sweep 
events that are observed. The rolls shift sidewise by an amount approximately equal 
to the roll spacing during a burst, a phenomenon also noted by Kline. There are 
many other points of contact between our model and observation, which have been 
detailed elsewhere (Aubry & Sanghi 1989, 1990; Aubry et al. 1990). It is therefore 
important to establish that the cycles are not merely artefacts of a low-dimensional 
truncation. In particular, as Moffatt (1990) pointed out, if streamwise and cross- 
stream velocity components are allowed to evolve independently, then all 
disturbances eventually decay in the absence of streamwise variations. This appears 
to be well known and may be demonstrated directly from the NavierStokes 
equations by showing that, in the absence of streamwise variations, the evolution of 
the cross-stream (uz,u3) velocity components is decoupled from that of the 
streamwise (u l )  component and that the former experiences no energy input from the 
mean shear (aU,/ax,). Details may be found in Moffatt (1990). Alternatively, one 
may seek a exact solution of the Navier-Stokes equations containing time-dependent 
streamwise vortices of the form 

u 2 =  $,,=A(t)coskx,sinkx,, u,=-$,,=-A(t)sinkx,coskx,, u1 = - u z ,  

with a fixed uniform shear and show directly that the amplitude of the cross-stream 
components decays monotonically and the streamwise component, after an initial 
increase in amplitude, also eventually decays. This features reappears in an 
unconstrained version of our model discussed below. Also see the comments following 
(3.13). Physically, unless the ratio of Reynolds stress to energy is held above zero, as 
it is by the representation (l . l) ,  then the disturbance cannot continue to extract 
energy from the mean flow. In the present paper we address this aspect of our earlier 
model and present a model in which uncoupled evolution of velocity components is 
permitted. We show that, while the disturbances do decay correctly in such a model, 
their transient dynamics is dominated by echoes of the non-trivial fixed points and 
the associated heteroclinic cycles. 

The paper is organized as follows. In $2 we review the symmetries inherited by the 
projected equations (1.2) from the original flow and show how heteroclinic cycles 
arise in the Aubry et al. ‘coupled’ models. In $3  we specifically identify the energy 
production terms in the original models and show how they reappear in a class of 
models with uncoupled velocity components. We also include a discussion of the 
physical origin of the non-trivial fixed points and cycles in the original models in 
terms of the Reynolds stress/energy ratio. We argue that in those models a closure 
assumption was effectively made in which the effects of streamwise variations were 
incorporated into the representation (1.1). Section 4 deals with an ‘uncoupled’ 
model. It is shown analytically that decaying heteroclinic cycles exist and numerical 
simulations are also presented. We draw conclusions in $ 5 .  

For more information on heteroclinic orbits and dynamical systems in general, see 
Guckenheimer & Holmes (1983). For a review of heteroclinic cycles and their 

(1.4) 



Intermittent dynamics in simple models of the turbulent wall layer 79 

relevance to intermittency in turbulence production, see Holmes ( 1991), where 
references to work such as that of Newell, Rand & Russell (1988) on Langmuir 
turbulence in plasmas can be found. 

2. O(2) symmetry and heteroclinic cycles 
To review the heteroclinic cycles found by Aubry et al. (1988), we discuss the 

special case of a model involving only two spanwise modes (K = 2 in (1.1)). As that 
paper and Aubry & Sanghi (1989, 1990) show, this minimal model contains the 
essence of higher-dimensional truncations. 

In  this case the equations of motion (1.2) take the form : 

(2.1) 1 61 = ~ 1 ~ l + P 1 2 ~ : ~ 2 + ~ ~ l , l ~ 1 1 2 + ~ 1 2  la2I2)a1, 

6 2  = P z a 2 + P 2 1 4 + ( e 2 1  la1I2+e22la2l2)a2. 

Here a, = x, + iy, are the complex coefficients, * denotes complex conjugate and the 
parameters p,, Pi,, ei, are all real numbers resulting from integrals of products of 
eigenfunction components and their derivatives (cf. Aubry et al. 1988, Appendix A). 
This model, involving the interaction of two complex Fourier modes having 
wavenumbers in ratio 1 : 2, is amenable to fairly complete mathematical analysis. In  
particular, Armbruster et al. (1988, cf. 1989) make use of the fact that  the system 

is completely integrable, with constants of motion 

E = - P  21  I a1l2+P,,la2l2, L = Im (a1 a: -a: azL (2.3a, b)  

The symmetry properties of (2.1-2.2) are of crucial importance. Note that these 

a, + a, eiJ” ( 2 . 4 ~ )  

and the complex conjugation a,+a:. (2.4b) 

These symmetries in Fourier space (O(2) - equivariance) are simply the result of 
translation (x, --f x, + d )  and reflection (5, +-x3), (ul, u2, us) +. (ul, u2, -u,) invari- 
ance of the Navier-Stokes equation for the perturbation velocity u in physical 
space. 

The heteroclinic cycles occur as follows. For eaj < 0, P2, < 0 < P12 and p2 > 0, 
p1 z 0, (2 .1)  has a circle (la21 = ( -p2(e2Ji ,  a, = 0) of non-trivial equilbria which are 
(unstable) saddle points. That circles of such equilibria occur is a direct consequence 
of ( 2 . 4 ~ ) .  Now consider the restriction of (2 .1)  to the invariant real subspace 
(a,, a,) = (5, + i . 0, x2 + i . 0). In this plane, the two equilibria 

to study (2.1) for pf, a, small by perturbation and averaging techniques. 

equations are invariant under rotation 

(x1, 3 2 )  = (0, f (-p2/e22)4 (2.5) 

are, respectively, a saddle and a sink and it is not hard to show that the unstable 
manifolds (separatrices) of the saddle A : x 2  = + ( -p2/e2,)* connect it to the sink 
B : x ,  = - ( -p2/e2,)i. See figure 1. However, in the full four-dimensional space, B is, 
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FIGURE 1.  The first legs of the heteroclinic cycle. 

like A ,  a saddle, but with unstable separatrices lying in the (yl, 2,)-plane. This plane 
is the image under a,+ajexp (iijx), of the real subspace of figure 1 and, since (xl, 2,) 
becomes (yl, -x2) under this element of (2.4a), we conclude that there is a pair of 
orbits connecting B to A in the (yl, s2)-plane, thus completing the heteroclinic cycle. 

In  the integrable limit (2.2) these cycles correspond to the one-parameter family 
of solutions lying on the integral surface defined by E = E,  > 0 and L = 0 (equation 
(2.3)). I n  the real subspace, which belongs to  L = 0, they are the semi-ellipses 
-PZl  xi +P12 x: = E,, connecting x2 = .t (E,/(P,,)$. 

The five-mode boundary layer models of Aubry et al. (1988) and higher- 
dimensional systems, including non-zero streamwise wavenumbers, of Aubry & 
Sanghi (1989) possess similar heteroclinic cycles connecting fixed points which, 
restricted to the real subspace (now of dimension 5 or higher) are again saddles and 
sinks respectively (cf. Aubry et al. 1988, $ 10, figures 9 and I I and Aubry & Sanghi 
(1989, figure 9). 

If certain inequalities among the coefficients pi, Pii, eu of (1.4) (and the analogues 
for (1.2)) are met, then the cycles are attractive in the sense that any solution starting 
near a cycle approaches it as t -+ + co , spending increasing ' quasi-steady ' periods 
near the saddle points, interspersed by rapid transitions in which the phases of the 
complex modes a, shift by integer multiples of in or x. See $4, figure 2, for an 
example. 

Aubry et al. (1988) pointed out that  the intermittent events characteristic of 
heteroclinic cycles have much in common with the phenomenon of bursting in the 
boundary layer, in which quasi-steady streamwise vortices violently break up 
(locally) and subsequently reform, often with a lateral shift (Kline 1967, 1978). They 
also showed that the addition of weak quasi-random forcing to  (1.2), corresponding 
to the fluctuating pressure field at the upper edge x2 = L, of the wall region, 
introduces a typical timescale into the intermittency. Stone & Holmes (1989, 1990) 
subsequently provided a simple analysis of a randomly perturbed heteroclinic 
attractor and showed that the probability distribution of inter-event durations is 
skewed to  the high end with an exponential tail, in agreement with some of the 
experimental evidence (Kim, Kline & Reynolds 1971 ; Bogard & Tiedermann 1986). 
Also see Holmes & Stone (1991) and Holmes (1991). Since heteroclinic cycles are a 
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robust feature of the models, ' stabilized ' by the symmetries of the physical system, 
it is natural to suggest that they correspond to an important mechanism for the 
production of intermittency and bursting. 

3. Energy production terms in coupled and uncoupled velocity fields 
In order to see how the non-trivial fixed points and cycles of $2 arise, we must 

investigate the effects of the representation (1.1) on the projection process. We do 
this first for the coupled velocity components of the original model and then derive 
an uncoupled model. 

3.1. Representation by coupled velocity components 

We start from the NavierStokes equations for the evolution of perturbations u to 
the mean velocity field U = (U,(x2), 0,O) : 

au,/at = - u1,2 u2 4, u, -ui,j uj+ (Ui, j  u,) - (l/P)P,,+ vu,,jj. (3.1) 

Here ( ) denotes the spatial average 

1 r1 c3 ( ) dz3 dx, 
L1L3 0 

and the mean velocity U, is assumed to have the form (1.3). Let 

+( X 2 - -  2) 
V 

(3.2) 

denote the constant (pressure gradient) part of U,(x,). Expanding the velocity field 
u = (u1,u2,u3) in the form (l.l),  substituting into (3.1) and taking the inner product, 

with each basis vector exp (2niZx2/L2) # l ( x 2 ) ,  1 = - K ,  ..., K ,  in turn, we obtain a set of 
2K+ 1 ordinary differential equations for the (scalar, complex) modal amplitude 
coefficients aPK,  ..., uK. As noted in $1, reality of u and the fact that a, decays, 
implies that we need only consider the K equations for a,, .. ., aK. 

The driving term which destabilizes the trivial equilibrium uk = 0 and leads 
to non-trivial equilibria and the related heteroclinic cycles derives from the term 
-U,,,u,S,, in (3.1). Projection of the linear part of this (cf. 3.2) yields 

due to orthogonality of the Fourier components. Analogous expressions for the other 
linear terms, as well as quadratic and cubic ones, resulting from projection of (3.1) 
with k, = 0 and + 0, can be found in Aubry et al. (1988, Appendix A). The important 
point is that the other linear terms, derived from VU~,,,, all have strictly negative 
coefficients whereas the expression (3.4) is positive, since #21 and #11 have opposite 
sign on (0, L2] for all 1 and U: is positive (Aubry et al. 1988, figure 4). These are the 
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terms a,, > 0 of the diagonal entries a , , -a (a~ l+a~z )  of (1.2), which as a decreases, 
permit bifurcation of non-trivial equilibria. The ‘production ’ terms are positive 
because the basis elements q51 and the inner product (3.3) impose coupling among the 
velocity components. Energy input to the streamwise component u1 via - Ul, u2 Si, 
is forced to excite the cross-stream components u2,u3 by the restriction that 
admissible velocity fields have the form ( 1 . 1 ) .  We discuss this in terms of Reynolds 
stress in $3.3. 

In (3.4) we only consider terms contributing to the matrix A, of (1.2), since we are 
primarily interested in the mechanism for destabilization of the trivial solution 
a = (u = ) 0 .  However, we note that the full mean profile U of (1.3) is responsible 
for establishing non-trivial fixed points and heteroclinic cycles, via the cubic terms 
in C which derive from the Reynolds stress component of (1.3). 

Before considering the effect of decoupling streamwise and cross-stream velocity 
components, we remark on the effect of including additional eigenfunctions in models 
with no streamwise variation. As the results of Herzog (1986) show (cf. Aubry et al. 
1988, figure 2), representations of the form 

K N  

u(x ,  t )  = u(x,, x3, t )  = x x a p ) ( t )  exp (27cikx3/L) q5p)(x2), 
k--K n-1 

(3.5) 

with no streamwise variations, would seriously fail to capture the typical energy 
content of the turbulent wall region. However, as N ,  K + co such an expansion must 
converge to the appropriate behaviour of ‘two-dimensional ’ turbulence lacking 
streamwise variations. Velocity fields of the form u(x2, x3, t )  do form an invariant 
subspace of the Navier-Stokes equations and the basis functions are a complete set. 
Hence, by Moffatt’s (1990) arguments, if N and K are taken sufficiently large, the 
trivial solution should become globally attracting. I n  particular, the matrix A, of 
equation (1.2) should have entirely negative eigenvalues, even for small a. 

While the eigenfunctions $In), q5im) are mutually orthogonal with respect to the 
inner product (3.3), the expressions analogous to  (3.4) involve aq/ax,  as a weighting 
function and thus the ‘production’ term in the @ ( t )  equation resulting from the 
expansion (3.5) is in general 

Herzog was only able to  derive the first three families of eigenfunctions and the third 
is of questionable accuracy, but it appears that, for m or n 2 2 the components 
$zq5rt have the same sign over much of the range 0 < x2 < L,, so that we expect 
contributions of the higher eigenfunctions to  A, to be negative, and hence stabilizing. 
While not conclusive, this is consistent with the known physical properties of flows 
lacking streamwise variations, and with the fact that expansions of the form (3.5) are 
complete in the subspace of no streamwise variation, as K , N +  CO. 

3.2. Representation by uncoupled velocity components 

We now wish to relax the restriction implicit in the representation ( 1 . 1 )  by 
permitting the streamwise and cross-stream components to evolve independently. 
This recovers the correct long-time behaviour of a flow lacking streamwise variations, 
even when only a single family of eigenfunctions is included. We will see that not only 
does a modest generalization of the model ( I  .2) reproduce this behaviour, but that  
i t  also reproduces significant features of the decay process and, incidentally, is of 
considerable independent interest. 
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We represent velocity fields in the form 

(3.7) 

and, by projection onto the two sets of basis elements ( $ l k , O , O )  and (0,$zk,$3k) 
independently, produce 2(2K + 1) ordinary differential equations for the evolution of 
the streamwise and cross-stream modal amplitudes b,, ck respectively. For con- 
venience, we wish to select $jk so that each basis element is divergence free and the 
pressure term of (3.1) can be removed (apart from the small boundary term) by 
integration by parts. Since the original empirical eigenfunctions (for k, = 0) are 
divergence free, satisfying 

and, of course @/ax,) (exp (2nikz3/L,) $,,(x,)) = 0, this requirement is automatically 
met by these basis elements. Note, however, that they are no longer orthonormal, 
but merely satisfy 
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exp (2nilx3/L3) 0 , exp (2nikx,/L3) 0 ( (3 r3 ) 

exp (2nilx3/L3) 0 , exp (2nilx,/L,) $ z k  = 0, Ql, k, ( (3 ($:) 

1 (3.9) 

although B, + C,  = 1. 
As Guckenheimer observes, if additional families of eigenfunctions g5!:), n > 1 are 

included in the representation, then orthogonality of the form (3.9) does not hold and 
there is no guarantee that the 'uncoupled ' components are linearly independent. 
However, for the purposes of the present paper, this will not matter. 

Using the representation (3.7), projection of - U,,,u, a,, yields in the ordinary 
differential equation for b,(t)  : 

(3.10) 



84 

However, since 

G .  Berkooz, P .  Holmes and J .  L .  Lumley 

(3.11) 

no such terms appear in the equations for the cross-stream components c l ( t ) .  The 
coefficients of the remaining linear terms are much as before, except that they now 
involve integrals of products of q51, q5Fl and (q521 q5zl + q5,*,) and their derivatives 
independently. The general expressions are given in Appendix A. 

For a model involving two spanwise modes in b, and el (four complex modes in all), 
the system takes the form 

(3.12) I 6 ,  = ~ l ~ l + p l ~ l + ~ , , ~ ~ ~ 2 + ~ , , ~ 2 ~ F + ~ , [ ~ l l ( ~ ~ ~ l + ~ l ~ ~ + ~ l 2 ( ~ ~ ~ 2 + ~ 2 ~ ~ ) l ,  

6 ,  = h2 b2 +p2 c2 + PZl bl c1 + c2[e2,(b: c1 + b ,  c:) + e,,(b,* c2 + b2 c : ) ] ,  

c, = v, c1+ 7 1 2  c: c2, 

6 ,  = v2 c2 + 7 2 1  c;, 

where, as in (2.1) the parameters u,, v,, pi,, yu, ei, are real. More generally, for K 
streamwise modes, the equations have the form 

b = Bb+Dc+F(c)b,,\ 

i. = Cc+E(c),  I 
(3.13) 

where B, D ,  F and C areK x K diagonal matrices and F(c) and the vector E(c) depend 
on c quadratically. Note that the cross-stream modes, C, are decoupled and evolve 
independently and that the streamwise modes b form a linear system which is excited 
by the cross-stream modes. As expected, energy transfer from cross-stream to 
streamwise motions is possible, but not vice versa, in the absence of streamwise 
variations. 

I n  writing (3.12) and (3.13) we have neglected the (real) perturbation component 
a, corresponding to  the Fourier mode of zero spanwise wavenumber. This is, of 
course, simply a perturbation to the mean velocity. We have already allowed the 
disturbances to modify the mean velocity : this is the source of the cubic terms. The 
component a, is a dynamically empty term, which cannot be influenced by the rest 
of the system (although it can participate in the decay of b,, c j ,  discussed below). The 
component a, must be externally excited, and if excited, i t  simply decays, since the 
pressure gradient is only sufficient to support the unperturbed mean velocity. To 
excite a, would be, in effect, to consider a different problem -the behaviour of an 
uncoupled system in a decaying mean velocity. This problem may perhaps have its 
own interest, but not here and now -we are trying to construct an uncoupled system 
for comparison with the coupled system (2.1), and there a, is not included. 

The structure of (3.12) with coupling from c, to b, but not vice versa, parallels that  
of the original Navier-Stokes equations (e.g. Moffatt 1990). I n  particular, the cross- 
stream modes c, decay monotonically as we show in $4, and the streamwise modes 
b, can (and do) initially grow in magnitude, extracting energy from the mean flow 
while the cross-stream modes are even minimally active. The basic mechanism was 
implicit in the considerations of Moffatt (1967) and later, in related work by 
Townsend (1970, 1976). 

Since the basis elements of the representation (3.7) are derived from those of the 
coupled representation (1. l ) ,  various relationships obtain among the coefficients of 
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B, D,  F,  C, €of (3.13) and A, B, C of (1.2). Specifically, in the two mode cases (3.12) 
and (3.1), we find that the coefficients of the linear terms satisfy 

B,(A,+p,)+(l-B,)v, =p ,  (j= 192L (3.14) 
where B, ( < 1) is the quantity defined in (3.9). From the observations above (cf. (3.4) 
and (3.10)), and the expressions given in the Appendix, it is clear that 

A,, v, < 0 < p, (3.15) 

and, if the viscosity v is small, p, % JA,J, Iv,~. In fact the ratios lp,/A,l, Ip,/v,l are of the 
order of the Reynolds number for small dissipation to neglected modes. (If losses to 
the neglected modes are included, recall that eventually p,  becomes negative, so that 
A, and v, and p, are all of the same order for large a.) Relations analogous to (3.14) 
hold among the coefficients of quadratic and cubic terms (Pi,, eu) also. For reference, 
explicit expressions are given in the Appendix. 

In the remainder of this paper we study the behaviour of the decoupled two-mode 
model (3.12) and compare it with that of the coupled model (2.1). Rather than 
seeking quantitatively accurate results, we wish to show that a low-order model of 
the type introduced by Aubry et al. (1988), lacking streamwise variations but 
allowing streamwise and cross-stream modes to evolve independently, correctly 
represents the qualitative features of decay of streamwise independent flows while 
still producing intermittency. In  our numerical simulations, we have therefore not 
computed coefficients in (3.12) in detail but have merely selected representative 
values for both (2.1) and (3.12), satisfying the relations (3.14) and with appropriate 
relative magnitudes, as discussed above. The relevant facts are that, for single 
families of eigenfunctions, as Aubry et al. (1988) show, the cubic coefficients etj are all 
negative, and the quadratic coefficients of (2.1) satisfy : 

( 3 . 1 6 ~ )  

and of (3.12) : 8 2 1  < 0 < PlZY811; 7 2 1  < 0 < 712. (3.16b) 

3.3. A closure assumption in the coupled model 
We end this section by observing that the representation (l.i),  involving the vector 
valued empirical eigenfunctions, effectively limits the ratio of Reynolds stress to 
energy. In particular, for K spanwise modes (using reality of u) ,  we have 

8 2 1  < 0 < 8129 

K 

k-1 5-1 

which is bounded below and above by 

(3.17) 

(3.18) 

respectively. Since the product $2k $1, of the empirical eigenvector components is 
non-zero on (O,L,] for all relevant k (Aubry et al. 1988, figure 4), this puts a strictly 
positive lower bound on (ulu2)/~~u~~2 (at each z , ~  (0 ,L2]) ,  regardless of the 
instantaneous values of the modal coefficients uk(t). Typical solutions ak of the model 
equations give ratios considerably larger than this lower bound. 

Recall that the empirical eigenfunctions are deduced from autocorrelation 
measurements in a turbulent boundary layer in which streamwise variations are 
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clearly present. Hence, in the ‘coupled’ model of Aubry et al. (1988), the 
eigenfunction expansion constitutes a closure approximation that embodies the 
effects of streamwise structure and unsteadiness in the values of (u,  u2)/l\ul12 
represented by the relative magnitude of the eigenfunction components. I n  this sense 
the coupled model only appears to  belong to the subspace of velocity fields lacking 
streamwise variation, since it incorporates a constraint which reflects the appropriate 
coupling between streamwise and cross-stream velocity components averaged over 
the streamwise direction xl. This averaging is precisely equivalent to projection onto 
the subspace of streamwise wavenumber k1 = 0.  This latter point is addressed in 
greater depth in Holmes, Berkooz & Lumley (1991). 

4. Analysis of the decoupled two-mode model 
4.1. Qualitative analysis 

We will not repeat the details of the analysis of the coupled two-mode model of (2.1), 
but merely quote relevant information from Armbruster et al. (1988). I n  that paper 
it is shown that rescaling of the coefficients ei j  allows us to set p,, = -pzl = 1.  In that 
case, for 

eij < 0, Pl,P2 ’ 0, P1 -P2 e 1 2 / e 2 2 -  ( - P z / e 2 2 P  < 0 < Pl -P2 e 1 2 / e 2 2  + ( -P2 /e22) i  

and p1 -pz e12/e2, < 0,  the system possesses a family of attracting heteroclinic cycles 
connecting each diametrically opposite pair of saddle points on the circle of equilibria 
Ja2J = ( -,u2/e22)f. See figure 1 and figure 2.  

As noted above, the structure of this system is closely related to that of the 
completely integrable (Hamiltonian) system 

a, = afa, ,  a, = at ,  (4.1 ) 
obtained in the limit of small p, and aj.  This observation is also helpful in the 
decoupled model (3.12), for here the cross-stream modes (cl, c,) evolve autonomously, 
their governing equations being (after rescaling to set y12 = -yZl = 1 ) :  

el = v,c,+c:c,, E, = v,c2-c;. (4.2) 
Using the functions E and L of (2.3a, b )  (with plz = -pZl = 1) which are constants 
of motion for v1 = v2 = 0, and recalling that these latter viscous dissipation terms are 
small (provided the loss to neglected modes, 01, is not large), it is easy to describe the 
dynamical behaviour. Differentiating along solution curves, we obtain : 

1 E = Ic112+Jc212; 

and 

or 

- = c, c: + c1 c: + c, c: + c2 c: = 2(v,(c,(2 + v2\c,12): 
dE 
dt 

L = Im{c;ct-c:2c2}; 

= Im{(2vl+v2) (C;C,*-C:~C~)}, 

dL 
dt 
- = 2(2v, + v2) L .  

Letting - v = min { - vl, v2} ,  (4.3) implies that  

dE/d t  < - ~ v E ,  

(4.3) 



Intermittent dynamics in simple models of the turbulent wall layer 87 

FIGURE 2. Evolution of modal components for the coupled model 

and thus, from (4.4) and (4.5), we conclude that both E and L are bounded above by 
exponential decay at  rate determined by the viscous dissipation terms. Since E is a 
(positive definite, quadratic), Liapunov function for (4.2), it follows that all solutions 
approach the trivial fixed point c, = c, = 0 as t + a. Consequently, as expected, the 
cross-stream velocity components decay. 

Once c, and c ,  are arbitrarily small, the evolution of the streamwise components 
b,, b, of (3.12) are also clear, since when cj = 0 this equation reduces to 

and, since the viscous terms A, are negative, we conclude that b, and b, also 
eventually decay to zero exponentially fast, in agreement with Moffatt (1990, 
equation (11). Regardless of the precise values of the coefficients in (3.12), the 
decoupled model therefore reproduces the correct asymptotic behaviour. We expect 
similar conclusions to hold for models including additional spanwise Fourier modes. 

While the perturbation velocity field u of (3.7) eventually decays, its dynamical 
behaviour during this process is interesting. Since the dissipation parameters v, are 
small, the behaviour of the cross-stream components c, is dominated by that of the 
integrable limit, which contains the families of heteroclinic orbits 

connecting each diametrically opposite pair of equilibrium on the circle J C , ( ~  = E,, 
c1 = 0. In the limit v, = 0, almost all solutions near the heteroclinic cycles lie on 
periodic orbits of long period, corresponding to L > 0, small, most of the time being 
spent near the equilibria. A typical solution started near this circle will therefore 
slowly decay in ‘energy ’ E ,  remaining close to L = 0, and so spending relatively long 
periods near the families of equilibria on c,  = 0, punctuated by rapid transitions in 

6, = A, b,, 6, = A, b,, (4.6) 

E = Ic,lz + I C , ~ ~  = E,  > 0, L = Im (c,  c$ -crc,)  = 0, (4.7) 
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FIGURE 3. Evolution of modal components for the uncoupled model : b, are the streamwise and 
cj the cross-stream components respectively. 

which c1 grows and c2 changes phase by 7c. The decay is not featureless, the 
heteroclinic cycles survive as a transient mechanism which transfers energy back and 
forth between the cross-stream Fourier modes. 

The streamwise mode equation is rather harder to analyse, but, since the terms 
pj cj which provide excitation have relatively large coefficients (recall that 
lpj/Ajl - O(Re)), we expect the weakly decaying energy in the cross-stream com- 
ponents to have a disproportionately large effect on the streamwise components. The 
numerical simulations, to which we now turn, show this to be the case, in agreement 
with other analyses, as remarked earlier. 

4.2. Numerical simulations 
As in the analysis of $4.1 shows, the general conclusions on solutions of the decoupled 
model (3.12) do not depend on the precise values of the coefficients, only on their 
signs and orders of magnitude. Rather than making detailed computations from 
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FIQURE 4. Evolution of energy for the uncoupled model. 

Herzog's ( 1986) eigenvectors, we therefore merely fixed values in the appropriate 
ranges. For the results which follow we took 

A, = - 1.2 x A, = -2.4 x lo-', 

V ,  = - 6 ~ 1 0 - ~ ,  ~ , = - 1 . 2 ~ 1 0 - ~ ,  

PlZ = 0.75, P,, = 0.75, Pzl = -0.5, 

p1 = 3.24 x lo-', p, = 6.48 x lo-', 

ylz = 0.75, yzl = 0.75, 
e l ,  = -12.0, e l ,  = -3.0, e,, = -6.0, e,, = -6.0. 

(Also see Armbruster et al. 1988). For comparison, a coupled model (3.1) was also 
integrated with the same choice of e#, and corresponding values 

p1 = 0.01, p, = 0.2, pl, = 1, p,, = -1. 

Note that, taking B, = B, = $, the relations (3.14) hold. Integrations were performed 
using a fourth order Runge-Kutta method within the simulation environment ' kaos ' 
by Kim & Guckenheimer (1990). A SUN sparcstation 1 was used. 

Figure 2 shows a phase-plane projection and time series for the coupled system 
(2.1). Initial transients have been allowed to decay and the characteristic heteroclinic 
structure is clear (cf. Aubry et al. [1988, figure 91). In contrast figure 3 shows solutions 
of the decoupled system, started with initial conditions 

Re (b , )  = Re (cl) = 0.01, 

Re (b,)  = Re (c,) = 1.0, 

Im (b , )  = Im (c,) = 0.01, 

Im (b,)  = Im (c,) = 0.01, 

close to the cycle in the coupled model. As predicted, the exponential decay of I c , ~  is 
punctuated by rapid events in which lcll grows and dies, each succeeding event being 
of lower magnitude. In  contrast, the components b, oscillate irregularly, exhibiting an 
overall increase in magnitude until the cj are less than 1 % of their original size. After 
this, the lb,1 decay exponentially, as expected. The fact that the decay is slow is due 
to the relatively small (viscous) dissipation coefficients A,. The behaviour is perhaps 
best illustrated in figure 4, which shows the evolution of the cross-stream and 
streamwise energies E,  = I C , ~ ~  + I C , ~ ~  and E ,  = lb1l2 + lb,I2 respectively. It is clear that 
the large coupling terms p,c, allow E,  to increase even when the monotonically 
decaying E, is rather small. This reflects the physical effect that even weak, non-zero, 
cross-stream velocities u,, u3 permit the extraction of energy from the mean flow U 
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by streamwise perturbations ul, and the behaviour should be compared with that of 
the solution (1.4). As we have already noted, this behaviour has been remarked 
earlier, for example in the paper of Moffatt (1967). 

5. Conclusions and physical implications 
We briefly summarize the findings of this paper. Physical reasoning or direct 

analysis of the Navier-Stokes equations shows that perturbation velocity com- 
ponents lacking streamwise variations in the wall layer should decay, leaving only 
the mean velocity U = (Ul(zz), 0,O).  The coupled empirical eigenfunction velocity 
components employed by Aubry et al. (1988) prevent this, since they permit 
continual energy extraction from the mean flow by holding the Reynolds 
stress/energy ratio (u,  near its known mean value in the wall layer. In this 
way the effect of the streamwise variations on the production of turbulent kinetic 
energy are essentially averaged into the zero streamwise wavenumber eigenfunctions. 
The model of Aubry et al., thus supplied continuously with energy, exhibits sustained 
intermittent (bursting) motions, corresponding to attracting heteroclinic cycles in 
phase space. These bursting motions mimic the bursting observed in the turbulent 
boundary layer, in particular the ejection and sweep phases. 

When streamwise (u,) and cross-stream (uz,  us) components are allowed to vary 
independently, as in the uncoupled model (3.12) of the present paper, we obtain the 
behaviour required of such a model without streamwise variation : the cross-stream 
components globally decay, while the streamwise component globally grows until the 
cross-stream components are essentially zero, whereupon it also decays. This 
behaviour, however, is strongly modified by ‘ghosts ’ of the heteroclinic cycles, the 
cross-stream components exhibiting strong bursting on a timescale short relative to  
that of the decay. This bursting is the same phenomenon as that displayed by the 
model of Aubry et al. and can be identified as such in an otherwise identical coupled 
model. 

For the parameters chosen (whose relative magnitudes are physically reasonable), 
the decay of the cross-stream energy is rapid relative to the eventual decay of the 
streamwise energy. This suggests that  the presence of cross-stream components and 
their bursting would occupy a relatively small fraction of the time and space in a real 
flow, while the decaying streamwise components (which take the form of low-speed 
streaks) would be present in a much larger fraction of time and space. The first 
observers of the bursting phenomenon referred primarily to  the ‘low-speed streak ’ 
(e.g. Hama & Corrsin 1957 ; Kline et al. 1967). It was only later (Bakewell & Lumley 
1967 ; Willmarth 1975 ; Blackwelder & Eckelmann 1979) that streamwise counter- 
rotating eddy pairs were associated with the low-speed streaks. There is still 
controversy over which produces which, and many observers consider the low-speed 
streaks to be primary, although we do not (see the discussion for the Coherent 
Structure session in Lumley (1990), particular Kline’s remarks). 

This study demonstrates that the intermittent dynamics associated with 
heteroclinic cycles survives even in a class of models whose uncoupled velocity 
components eventually decay. In  fact, the cycles are a direct consequence of natural 
physical symmetries and of the quadratic interaction terms in the Navier-Stokes 
equations, as the integrable limiting cases (2.2) and (4.1) demonstrate. The main 
features causing intermittency and bursting in the original model of Aubry et al. are 
therefore independent of the closure assumption inherent in the use of empirical 
eigenfunctions. This work also shows that low-dimensional projections of the 
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Navier-Stokes equations, restricted to subspaces lacking streamwise variations, can 
adequately capture the dynamics of decaying turbulence. However, we conclude by 
stressing that, in order to reproduce the sustained dynamical interactions 
characteristic t o  the wall layer, which depend upon streamwise variations, in a low- 
dimensional model, one must incorporate streamwise effects in a suitably averaged 
fashion. As we show in $3.3, the empirical eigenfunctions of the proper orthogonal 
decomposition provide the appropriate averaging procedure. 

It is important to note that, while the empirical eigenfunctions are stationary 
velocity fields obtained by averaging, their variable coefficients, evolving via the 
truncated NavierStokes equations, produce instantaneous dynamical behaviours 
characteristic of the full flow (Aubry et al. 1988; Aubry & Sanghi 1989, 1990). A 
qualitative measure of how faithful such models are would require one to average the 
amplitude coefficients of the model equations and compare their ratios with those of 
the empirical eigenvalues, which are characteristic of the full flow. Studies of this, 
and of projections of direct numerical simulations onto empirical subspaces in 
comparison with solutions of low-dimensional projected equations, are currently in 
progress. 

This paper was motivated by the comments of H. K. Moffatt a t  the conference 
Whither Turbulence?, held in Ithaca in March 1989 (see Moffatt 1990; Lumley 1990). 
Parts of the material appeared as an author’s closure in the proceedings of that 
conference (Holmes 1990). The work was carried out under AFOSR contract 
89-0226A (Wall Layers). 

Appendix A. Decoupled equations and constraints on coefficients 
For one eigenfunction and an arbitrary number of cross-stream Fourier modes and 

no streamwise modes the NavierStokes equations (with the mean velocity profile 
expressed in terms of the Reynolds stress) have the following terms after projection. 
(Note: different notation to that used in text.) 

A. 1.  Coupled case 

We perform a Galerkin projection on the subspace spanned by 

using (k = k3) 

The resulting equations have the forms : 

FLM 230 
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Heref,(t) is a forcing term due to the matching to the outer layer. The symmetries 
of the system have not been used to  express i t  in a simpler form, as done in Aubry 
et al. (1988). 

A.2. Uncoupled case 

We perform a Galerkin projection on the subspaces spanned by 

and get (k = k 3 )  

The following constraints apply : 

a k + P k  = 1, > 0, P k  > 0. 

Ek+Fk+Ik = Bk, I k  < 0 and Ek < 0 
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are damping terms, Fk > 0 is a driving term. In the equations studied Bk > 0. Also : 

G k , k + J l , k ' =  'k,k¶ H k , k =  Dk,lc, gk('?) =fk( t ) .  

The outer layer perturbation pressure term appears only in the cross-stream 
equation. 

Recall that the equations studied in Aubry et al. (1988) had 'Heisenberg damping 
terms '. Those included both linear and quadratic terms. We assume they split in a 
similar manner in the present case. To get the equations studied one should observe 
that the realizability implies that C-kq$-, = czd;", (see Aubry et al. 1988) thus 
it is enough to study bk,ck for k > 0. Also note that the new systems have the 
O ( 2 )  symmetry of the original system, but in a new representation: i.e. for any 8, 
(bj ,  c j )  + (eUeb,, eijec,) is a symmetry. The coefficients of the equations are real for the 
same reasons described in Aubry et al. 
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